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Summary 

The Oriented-Eddy Collision (OEC) turbulence model hypothesizes that 
turbulent flow can be modeled as a collection of interacting fluid particles (or eddies) 
which have fluctuations and an inherent orientation. The model has been formulated in 
the form of a set of partial differential equations. Underlying this approach is a 
unique PDF collision model that includes the effect of orientation information along 
with the usual position and velocity information in the formulation of the 
probability density function. This adds important physics to the model and 
differentiates it from most other PDF models and Reynolds-Averaged Navier- 
Stokes models. 

The Oriented Eddy Collision model exactly captures rapid distortion, which 
is a major shortcoming of most prior Reynolds stress transport models. The ability 
to predict highly non-equilibrium flow situations well is a major feature of the model. 
The model automatically (via its construction) satisfies realizability and other known 
mathematical constraints. It is readily extensible to complex geometries and additional 
physical affects (such as compressibility, particles, etc). The model has been 
implemented in the open source CFD framework OpenFOAM for rapid dissemination. 
It has been tested extensively on basic turbulent flow benchmarks and, more recently, 
on flows with solid boundaries. 

Background 

The traditional approach to modeling turbulence (or other types of non- 
Newtonian fluids) is to hypothesize equations for the unknown stress tensor, lin 
turbulence this is the Reynolds stress tensor. Due to the fact that the eddies which 
make up the flow are roughly the same size as the gradients in the mean flow these 
eddies respond on similar timescales as the mean flow. This means that algebraic 
models are rarely predictive, and time-dependent evolution equations for the stress 
tensor must be hypothesized.   In turbulence, these evolution equations are the exact 



but unclosed Reynolds stress transport (RST) equations. Simpler turbulence models, 
such as the k-s model or algebraic Reynolds stress models are simplifications of the 
RST equations. 

There is a strong analogy between turbulent fluid flow and non-Newtonian or 
granular flows. Very similar to turbulent flows, transport equations are very often 
developed for non-Newtonian stress tensors (the Oldroyd-B model and FENE-P 
models (Herrechen, et al. 1997) are examples). In fact, we note that many important 
turbulence modeling concepts (readability, material frame indifference, tensor 
consistency) actually find their origins in the non-Newtonian literature at this transport 
equation level. This work is predicated on treating turbulence modeling in a fashion 
that is similar to non-Newtonian fluid modeling. 

It has long been recognized in the non-Newtonian fluid community that transport 
equation models have serious limitations. An alternative approach is to model the fluid 
at the particle collision level rather than using a transport equation for the stress. This 
approach is more versatile, and in many ways, more fundamental. For example, 
modeling a gas as particles with binary elastic hard sphere collisions gives the Navier- 
Stokes equations and the perfect gas law when the density is high, but also the correct 
gas behavior even when the density is low (when Navier-Stokes is not valid). In this 
work, we investigated the possibility of modeling turbulence as a collection of 
interacting oriented particles (which will turn out to be disks or rods). 

Once a certain collision behavior has been hypothesized there are three very 
different ways to solve the particle system numerically and obtain a prediction of the 
fluid behavior. The most straightforward technique is the 'molecular dynamics' 
approach where one numerically tracks all the particles in the domain, and performs 
collisions when they occur. This approach has a computational cost equivalent to large 
eddy simulation (LES) and is not considered further. The other two approaches note 
that one does not really care what happens to individual particles but only what 
happens to particles on average. The quantity of interest then becomes the probability 
density function that describes the probability that a particle (at a certain place and 
time) has a certain velocity. The evolution of the probability distribution function, f, 
obeys the exact equation 

df df df dn{ df df 
— + v,. — + ai — + —L— = — 
dt       cfr,        dv4     dt dn:     dt (1) 

collisions 

where a, is the acceleration due to external forces (like gravity), «,  is the particle 
orientation, and the right-hand side describes the average affect of the collisions on the 
PDF. It is this average collision behavior that we now wish the model to predict. This 
collision term is also what gives the ensuing model its name. Our collision models 
assume the collision term has a Fokker-Planck form (see Equations (2) through (4)). 

There   are  three   different  ways  to  solve  this   PDF   equation.   Using   the 
equivalence   between   the   Fokker-Planck   equation   and   the   Langevin   equation 



(Brownian motion), it is possible to construct a Lagrangian particle method. This is 
essentially the approach extensively researched by Pope (1994, 2000) and coworkers 
(with the major difference from this work being that that Pope and others typically do 
not use oriented eddies, just colliding spheres). In this particle approach, the 
Lagrangian particles move like Brownian dust particles. They move with the mean flow 
and are randomly perturbed using a prescription given by the model. In this way each 
particle is independent from all the others, and simply interacts with the average of all 
the other particles (/.©. the mean flow, and average turbulence statistics). This Monte- 
Carlo approach is less expensive than tracking and implementing individual collisions 
('molecular dynamics' approach) but is still expensive because a large statistical 
sample of particles that is required. These methods significantly over-resolve the 
shape compared to what is necessary to model the turbulence. 

Using a mesh based method (rather than Monte-Carlo sampling) is also possible. A 
mesh based method can use a very coarse mesh, thereby lowering the costs involved. 
A very coarse mesh in velocity space is an idea borrowed from Lattice-Boltzmann 
numerical methods for solving the Navier-Stokes equations. These methods solve a 
PDF equation with a very simple collision term that is intended to give Navier-Stokes 
(Newtonian) fluid behavior. The difference in this work is that we solve a PDF 
equation with a much more complex collision term (Fokker-Plank), which results in 
RANS behavior for the fluid (rather 
than Newtonian). The coarse 
mesh is acceptable in both cases 
because the interest is not in the 
PDF itself but in its lowest order 
moments - the mean flow and the 
stresses. These low-order 
moments can be reasonably 
extracted from a very coarse 
approximation of the PDF. 

Collision Models 

PDF Methods Particle 
Tracking 
('molecular 
dynamics') 

Coarse Discretization   Langevin Equation 
('lattice methods') (Lagrangian particle methods) 

Figure 1: Taxonomy of classic collision model approaches. 

Note that the Langevin approach is 
equivalent   to   approximating   the 
PDF with a random sample, and a 
large sample is needed even to 
approximate     the     low     order 
moments reasonably well. The Langevin approach is slower because it provides more 
information (about the higher order moments).  Unfortunately, one has little interest, in 
engineering turbulence models, in the extra information the Langevin solution method 
provides.   These first two approaches to solving the collision model (and the brute 
force LES-type approach of tracking actual eddies), is shown in Figure 1. 

While the coarse mesh approach is inspired by the success of lattice -Boltzmann 
numerical methods, the approach must be numerically different. This is because the 
PDF governing molecular interactions (Lattice-Boltzmann) has a variance (width) that 
is much larger than the mean and which is essentially constant (related to the speed of 
sound).   In contrast, the PDF for turbulence has a variance which is much smaller than 



the mean (turbulence intensities are measured in percent), and which can vary 
significantly (in time or space). This is illustrated in Figure 2: 

Figure 2: Left - a typical PDF for molecules. Right - A typical PDF for turbulence. 

To capture the turbulence PDF with only three points it is necessary to have a moving 
adaptive mesh in velocity space. In order to avoid losses due to interpolating one 
mesh to another as the mesh moves, we implemented a fully conservative scheme in 
which the mesh moves continuously in time (during the time step). This uses 
technology previously developed by Perot & Nallapati (2003) for moving meshes in 
physical space. In actual practice the PDF is three-dimensional. An isosurface of an 
actual PDF (the 50% value) is shown below. This PDF is modeling the behavior of the 
Le Penven et al (1985) return-to-isotropy Case III > 0 experiment. Note the fairly large 
changes in the shape and size of the distribution even for this simple experiment. It 
can also be seen in this figure that a spherical PDF corresponds to isotropic 
turbulence. 

Figure 3: Evolution of the 50% isosurface of the PDF for the return-to-isotropy experiment of 
Le Penven, et al. 

The coarse mesh approach was used in our initial ONR work, but the current 
model actually uses a third PDF equation solution approach that ends up being far 
more familiar to the CFD users. In the current project we took moments of the PDF 
collision equation over velocity space in order to construct a set of partial differential 



equations for the behavior of each type of oriented disk. No velocity space meshing (or 
Monte-Carlo sampling) is now necessary. This third approach can be directly included 
into PDE code frameworks (such as OpenFoam). It has the disadvantage that the 
third-order correlations must now be modeled (in the pure PDF solutions they can be 
deduced from the PDF). This means the turbulent diffusion processes must now be 
modeled. 

Theoretical background for the un-orientated eddy collision (EC) model 

Lundgren (1967) first derived the exact expression for the collision term in the 
PDF evolution equation for turbulence. As might be expected, this collision term 
cannot be expressed solely in terms of the PDF, and solution of the PDF evolution 
equation therefore requires a model for the collision term. Original development of the 
OEC model focused on generalizations of the Fokker-Plank collision model (that was 
derived to describe Brownian motion). In its simplest form this collision model has the 
form, 

£ 
at collision 

3 r (      \ri ud2f 
(2) 

where  u^ivjdv is the mean velocity and  a  and  b  are model constants.    For 

turbulence this needs to be generalized.   Pope and coworkers (Pope 2000, Reynolds 
1995, Van Slooten 1996) use the form, 

dt collision dv; 

GuVif\ + b^T + v-JT (3) 

where v', = v, -w, is the fluctuating velocity and the first term (the drift term) now has a 

matrix model parameter Gv, and a viscous term has been added for near wall (low Re 

number) calculations. The conversion of these Fokker-Planck models to a Langevin 
equation for numerical solution dictates that the diffusion term (with b) be isotropic and 
not have a tensor coefficient. 

Original development of the OEC model analyzed the following even more 
generalized Fokker Plank model. 

dt collision dv. 
H, 
''Jdv. 

+- Vy+Wij) 

3r 
+- 

dv. 
vK 

dv, 

8x_ 

dx. 

+ - 
dt 

df 
(4) 

meshdv, 



The last term on the right hand side accounts (exactly) for the coarse mesh motion in 
velocity space (to track the PDF). The first three terms involve model tensors. 
Sometimes, these tensors are isotropic and governed by a single parameter. The 
viscous terms account for low Reynolds number effects and strong inhomogeneity. 
They do not involve any additional parameters and were derived via analysis and the 
condition that the model be exact as it approaches a wall (in the laminar sub layer). 

The zeroth moment of the PDF equation (Equation (4)) is the mass conservation 
equation. The first velocity moment of the PDF equation gives the momentum 
equation, 

du„    diuu+R) d r       i _!L+_±_L_n ^L-a    =     VUni 

dt dx, "    dx,1   ",,J (5) 

This  implies that the acceleration  is given  by   an=-pn + {nu,n)i.     The viscous 

contribution to this acceleration is necessary only if the viscosity is not constant. 
Taking the moment of the modeled PDF equation with respect to v'„v'm gives the 
Reynolds stress transport equation, 

)Rnm +d(",-0+g?k + (     R Rj = (Q R  +Q.Rlm)+(HmH +Hmn) v   m,j    jn        n,j    jm f      v    ny    jn ry    jm /      \     run mn / 
dt dx, dx. 

-UmM„ ,+J„Mm,.) + v   ny   nyj nj   m^j / dx. 

dR jm 

dx. 
2vK 

d(lL/K) (6) 

dx. 

where Tnm = jVnv'm v\ fdv and K = ^R„ is the turbulent kinetic energy. The tensors Gy, 

Htj, and Jtj determine the model. Complex dissipation and pressure-strain models 

can be implemented via these tensors. 

The    equation    for    the    total    resolved    (or    mean)    kinetic    energy, 
£,=Jiv,v,/rfv-i/?,,,is 

dE      d r -| d 
~dt + !k\-UiEr +Uk(R**~VU>>><U = -(PU<l+UnJRJn-VU.,Mj +UjJ+~j£ dx, (7) 

The resolved kinetic energy correctly loses energy as a result of large scale 
dissipation, and via turbulence production. It is completely specified and does not 
depend on the model coefficients. The details of these derivations can be found in 
Chartrand (2005). 

When implementing the Fokker-Planck collision model (Eqn. 4) on a coarse 
mesh, it is attractive to make the change of variables / = ln(/).     If f is close to 



Gaussian (which is expected) then /' will be close to parabolic. This parabola can be 
accurately resolved and interpolated by the three points available in our scheme. The 
evolution equation for / is, 

df       df    , .df       _ • . df     d 
— + Vj^- + (a, - a. ) -=— = -Git - Glvi -^- + — 
dt     ' dxt    

V        """'dv, J J dvt    dv, 
H 

11 dv. 
+ H 

(Jv+vuu) 

df 

df 
dx 

+ (Ji]+vuiJ)-        - + 
dx j dvt    dxi 

3L 
dx. 

dx„    dx„ n n 

l+
vi df 

K    K dv. 

%_df_ 
iJ dv, dv} 

df_df_ 
dx. dx. (8) 

While there are more terms to compute in this version, the equation for / is much 
more accurate to solve numerically. In addition, low order methods and simple (3 
point) difference stencils suffice because / is expected to be very close to quadratic. 

The models for the tensors  Gv,   Ht], and  JtJ   require a time scale to be 

dimensionally correct. For this reason an additional transport equation for the 
timescale must be included in the model. The un-oriented eddy model therefore used 
the standard epsilon transport equation for this purpose since it is very commonly used 
in RST models as well. The oriented model obtains the timescale from the orientation 
vector whose length represents the inverse of the eddy size. So no scale equation is 
necessary in the most recent model implementation. 

The Original Model 

The original collision model first proposed by Perot and Chartrand (2005) was 

Gv = cusg+c:2wv+ic;2^s„-—L Ry--£CdSy     (9) 

Hij -fCdRij (10) 

J^-\KCpl8, (11) 

where E = E\ 1 + 10V {4K) IK is the modified dissipation that goes to zero in regions 

of strong inhomogeneity such as near walls, and P = -R„„unm is the standard turbulent 

production  rate.       The frame  invariant strain-rate and  rotation-rate tensors are 



respectively &=— (utJ+uu) and    Wq=— (utJ-u.,) + s^lk, where QJs the rotation 

rate of a non-inertial frame of reference. 

For comparison with classic RST models, the equivalent Reynolds stress 
transport equation would be, 

—22-+ — KJ?   +—T.+U   ,R. +u iRim) = 
dt      dxt dxt 

V mJ  J        J  J } 

{CUSmj+C:2Wmj)RJn+(CUSnJ+C:2WnJ)Rjm 

P £ 
+ CS — R      1 R  R pl K   mn       R R     ms sn (12) 

lmrg+ „        d    dRmn    „   dK 
+ TKCn2Smn+ — v—^--2v— 

j pi    mn       /-\ <-\ *\ oxi     oxi oxt 

(R..A mn 

K 

Note that the model constant  Cd   does not affect the Reynolds stress transport 

equation.  However, it does have an effect on the higher order moments (such as Tlim) 
and the turbulent transport term. This constant can be related to the Kolmorgorov 
constant (Pope 2000). The other model constants are actually parameters and are 
given by, 

C'p2=-S—.2Ff      C
w

p2=^ AFt      C>-0.2F2
+.0064        (13) 

v + vt v + vt 
p e 

K2 

where the eddy viscosity is given by v, =.\2F^r and F = 2$-det(RIJ/k) is the standard 

two-component parameter that is unity in isotropic turbulence and zero for two- 
component turbulence. 

The transport model for the epsilon equation is standard and is given by 

de        de     e d  .      _      . de 
-^- + ^^- = -(CeiP-CE2s) + — (v + CE3vT)— (14) 
dt        oxi    K dxt oxl 

where CEl = 1.43, CE2 = 11 / 6, Cs3 =0.83, and fairly standard values. 



Inspiration for OEC 

The analysis above lays the groundwork for the oriented eddy collision model. A 
brief review of PDF-based models is in order. 

Boltzmann and Fokker-Planck 

It is helpful to begin with a simple case, and not consider complications such as 
colliding oriented eddies. Instead, consider a collection of particles: an expression can 
be found for the number of particles that have some velocity v, at location x, and time 
/, called a number density function. The more familiar probability density function is 
simply the number density divided by the total number of particles under consideration. 
Let /(V,,JC,,/) be the probability density function. Using this function, one can arrive at 

several useful quantities: multiplying / by v, and integrating over all of the possible 
velocities (that is, taking the first moment of / and integrating over velocity space), 
one can arrive at the mean velocity for the collection of particles, U,: 

Ui=lVif(Vi>Xi>t)dvi (15) 

where |    and dvt imply a triple integral over v,,/ = 1,2,3. If the mean velocity can be 

found, perhaps another quantity of interest, u,w7 can be found. Taking the second 

moment of / with the fluctuating velocities v,-U,, recalling the fluctuating velocities 

are the total velocity of a given particle v, with the mean velocity of all particles U, 
subtracted off: 

uiUj = I (vf -Ut)(vj -UjMv^tW (16) 

once again recognizing that a triple integral exists in Equation (15). Equations (15) and 
(16) represent the statistical mechanics of the collection of particles but say nothing 
about the physics present in that / has yet to be prescribed. One of the simplest ways 
to describe the time evolution of a PDF is through the Boltzmann equation, which 
essentially models particle collisions by relaxing their PDFs to the mean: 



T-f^i,Xi,t) + Vi—-f(vnXi,t) ot oxi 

d    rt s      d   „ vl (17) 

with a, representing some body (external) force that may be acting on the fluid (such 
as a Coriolis term) and the right hand side representing the way in which the average 
of all collisions over time affects the PDF. The left hand side of Equation (17) is exact, 
while the right hand side is that which requires a model, the so-called "collision" term. 
An approximation to the Boltzmann equation, such as the one originally proposed by 
Bhatnagar, et. al (1954) can be employed and slowly brings / to an equilibrium value, 
which usually means a Gaussian distribution. Once a form of / has been chosen, it 
can be used in Equation (15) and the mean velocity found (the method in which this is 
done will be discussed later). A linear relaxation model may also be employed (see 
Perot & Chartrand's earlier work). Interestingly, for low density flows (meaning flows in 
which few particle collisions occur), a simple collision model returns the ideal gas law, 
the viscous terms of the Navier Stokes equations, Fourier heat conduction and many 
other physical processes. Thus, this method is suited for Newtonian flows, but might 
not work well as a turbulence model. Inspecting the second moment and plugging the 
Boltzmann equation in to Equation (16) yields an unfortunate result: this simple 
collision model predicts that the Reynolds stresses are zero, du,Uj/dt = 0. Not only is 

this approach flawed, it is in fact useless for capturing the behavior of a turbulent flow. 
This is due to the fact that the Boltzmann equations look at fluid interactions purely as 
a viscous phenomenon with a single relevant time scale, an idea which sounds familiar 
from previous turbulence models considered. It was already determined that this 
assumption will never capture turbulence properly, and it is no surprise that this 
method fails. 

An alternative to the Boltzmann equation is the Fokker-Planck (FP) equation 
(also referred to as the Kolmogorov forward equation from Kolmogorov (1942)), which 
describes the time evolution of a PDF in a more complicated way: 

f) f) r) 
— f(^,xi,t) + vi—-f(vi,xi,t) + ai--f(vi,xiit) 
Ot OX; OV; 

ir-(v,-CO/(v<>v,,0+£-3^ 
OV, OV, 

with a and /? model constants. Equation (18) (adapted from Perot & Chartrand 2005) 
represents one of the simplest Fokker-Planck collision models with the right hand side 
of Equation (17) replaced by two terms. The right hand side of Equation (18) must be 

10 



generalized in order to be employed for PDF turbulence model methods. Pope and 
others proposed a generalized form, and use it extensively in their PDF method work 
(see Pope 2000, Pope 1982, Pope 1983, Perot & Chartrand 2005 and more): 

*j Q *s 

— f(vi,x„t) + vi — f(vl,xl,t) + al—f(vi,xi,t) 
ot oxt dvt 

d r i        d2 d2 (19> 

oVj*- J      dvt dxi 

where GtJ is a tensorial modeling parameter, v the fluid viscosity, and noting the 

addition of a second order spatial derivative (Laplacian) of the PDF. Unlike the 
Boitzmann equation, the FP approach captures more than just viscous Navier-Stokes, 
and the second moment is not zero. 

The two methods mentioned above relate to the aforementioned Langevin 
equation: a Langevin approach can be employed to solve the resulting PDF transport 
equations arrived at from plugging either the Boitzmann or the Fokker-Planck collision 
models in to Equation (17) and the resulting expression for / in to Equations (15) or 
(16). This is because the equations may be solved using "normal" methods, that is 
using a finite-difference or finite-element method or may be solved by using a particle 
approach, the details of which will be avoided here. Using a Langevin approach makes 
no changes to the underlying physics - it is simply a particle method solution. When a 
Langevin method is used with a Boitzmann equation, this is often referred to as a 
Lattice-Boltzmann method (as the Boitzmann equation is solved in a lattice of points, 
dictated by the Langevin equation). Solving a PDF collision method in this way is akin 
to solving Navier Stokes without turbulent terms. Solving the Fokker-Planck model 
using a Langevin method results in a means of solving the Reynolds-averaged Navier 
Stokes equations in the form of a Reynolds stress transport model. This method is 
referred to by Pope as the Generalized Langevin Method (GLM) (Pope 2000, Pope 
1994, Haworth 1985). Various forms of the Fokker-Planck model lead to various forms 
of Reynolds stress transport models, ranging from the simpler Launder, Reece, and 
Rodi (Launder, et a/. 1974) to more complex forms. The fact that well-known 
turbulence models emerge from the steps above could be considered affirmation that 
the analysis was correct. However, simply returning to a statistical mechanics-based 
version of a well known turbulence model family also means that the new PDF method 
inherits many of the previous problems associated with RST models, most important of 
which is the inability to capture linear (rapid distortion theory limit) turbulence. Despite 
the fact that PDF methods require no model for the triple correlation ukulu] (assuming 

they remain in PDF and not RST form), they still suffer from many problems. This calls 
in to question the need to accurately model the triple correlation and suggests that 
perhaps it is in the pressure term that the missing physics may be found. 

11 



Advanced methods 

Taking a step back from PDF methods for a moment, the recent work of 
Reynolds & Kassinos (1996) will be considered briefly. Reynolds & Kassinos wished to 
capture rapidly deforming homogenous turbulence with a Reynolds stress transport 
model. They hypothesized that the stress tensor was not enough to capture rapid 
distortion theory limit turbulence as information about the turbulent structure was not 
contained within such a quantity. Among others, they proposed a general model which 
transports a single, rank two tensor, the "eddy axis tensor" which characterizes the 
shape and orientation of a turbulent eddy. The model employed algebraic equations of 
state (as opposed to a stress tensor) and two scalar quantities thus containing 
information about the dimensionality and "componentality" of the turbulence (Reynolds 
& Kassinos 1996). The model managed to capture many linear turbulence cases 
exactly, which was the first ever demonstration of an RST-like turbulence model 
providing accurate solutions in this limit of turbulence. Unfortunately, many considered 
the model difficult to understand (this author included) mainly due to the fact that the 
entire model was formed in wave (Fourier) space. Despite this issue, the work 
produced a powerful idea: Perhaps the failure of PDF-based turbulence models lie not 
in the formation of the PDF collision model (e.g. Fokker-Planck) but instead in a 
previously unimagined missing unknown, perhaps related to orientation of turbulent 
eddies or, in the case of PDF methods, fluid particles. 

Perot & Chartrand (2005) proposed a very general Fokker-Planck collision 
model with more unknowns than the general Fokker-Planck model proposed by Pope 
(2000): 

df       df        df 
—+vi-

:L-+ai-
!L- 

dt        dxt        dv, 
8 [Gfr-W]*  8 

dv 

dv. 
(Jij+vuiJ + • 

8X; 

*JL 

H 
°dv 

dxt 

d 
+ — 

j _ 

vK, 
'" dx_ K ) 

(20) 

with an additional term added to the end of Equation (20) to account for mesh motion, 
which was related to a numerical method used by Perot & Chartrand to solve their 
generalized Fokker-Planck method using an adaptive three-point mesh in velocity 
space (Perot & Chartrand 2005).  In Equation (20),   GipHl}   and   Jy   are tensorial 

modeling terms, utJ is the physical-space velocity gradient and Kn the physical-space 

gradient of the kinetic energy. Van Slooten and Pope (1996), and more recently Perot 
and coworkers have attempted to overcome the inherent limitations of Fokker-Planck 
based PDF turbulence models. Work by Perot determined that any extension of the 
Fokker-Planck model would simply result in a slightly more complex but still inherently 
limited RST model, unless orientation was given to the fluid particles, that is a Fokker- 
Planck collision model was formed for something like rods or disks (later called eddies) 
rather than particles which are spheres and have no orientation. This can be achieved 
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by adding an "extra" unknown to a Fokker-Planck like collision model yielding 
derivatives with respect to time, space, and the extra term, which could be thought of 
as eddy orientation. 

Van Slooten and Pope (1996) furthered the ideas presented by Reynolds & 
Kassinos (1995) first by applying them to a PDF-based method solved with a particle- 
based approach (a Monte-Carlo solution), and then using this new method to simulate 
inhomogeneous linear turbulence. They implemented this extra information via a joint 
PDF of velocity and a "wave vector" which is related to the unit wave vector tied to a 
given turbulent eddy size. The collection of these vectors are referred to as the 
directional spectrum. This was a major step forward in PDF-based turbulence 
modeling, but the method is both difficult to understand and expensive to solve, 
requiring a large statistical sample in order to return reasonable results from the 
particle-based solution. Furthermore, Van Slooten & Pope point out the need for 
improved dissipation models. 
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Figure 4: Box A illustrates a hypothetical region of turbulent fluid as a classic particle collision model, like 
Fokker-Planck or Boltzmann. The particles are spheres and cannot have any orientation. Box B is a 
schematic of the same flow but with an expanded collision model that treats particles as rods rather than 
spheres, thus including orientation information. Finally, box C illustrates disks (eddies), which appear to 
be the shape necessary in order to capture linear turbulence. 

Perot and Chartrand picked up where Van Slooten and Pope left off, believing that the 
key to linear turbulence was indeed the extra "information" contained within the wave 
vectors. They chose to add this information as a second derivative to the generalized 
Fokker-Planck Equation (17): 

d 3 5 
— f + vi f + ai / = 
dt dx: dv: dv: 

[G,(v,-Ut)f] 

jL[Hijqif] + p^f + v^f 
dv dx 

(21) 
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noting the second derivative in orientation space, here denoted by the unknown vector 
q,. This term acts as a sort of advection in orientation space, and ends up being 
responsible for the decay terms present in the RST equation form of the eddy 
orientation vector evolution equation. Perot and Chartrand interpreted this extra 
information as eddy orientation (similar to Reynolds' and Kassinos' hypothesis), but 
chose to transform the PDF collision model in to a RST equation form. The resulting 
model was like a classic RST model but had extra information inherent to it, resulting in 
a model which could capture fast pressure strain exactly, yielded excellent 
experimental agreement in elliptical flows, and calculated linear turbulence exactly. The 
dissipation term still required model tuning, but nearly all RST model issues had been 
resolved. Furthermore, unlike the PDF form, when cast as an RST model the turbulent 
transport term required a model, but models for this term are abundant and not difficult 
to form. Figure 4 is a schematic illustration of this concept. A critical difference exists 
between the model proposed by Reynolds & Kassinos (1996) and that of Perot: Perot's 
real-space eddy orientation model did not take the moment of and subsequently 
integrate over orientation space, whereas Reynolds & Kassinos did. This step allowed 
Reynolds & Kassinos to cast their model in the form of a Reynolds stress transport 
model which, in order to then incorporate the extra unknown, they multiplied with the 
unknown vector yielding a third rank tensor transport equation. By choosing to forgo 
this moment, Perot kept orientation in the Reynolds stress equation itself. This enabled 
the evolution of the orientations to be prescribed in such as way that the full Reynolds 
stress transport equation, complete with included orientation information, was exact in 
the limit of linear turbulence. 

More recent work by Perot, Chartrand and Andeme (2008) furthered progress 
on the Oriented Eddy collision model, treating it, for the most part, as a modified RST 
model rather than a PDF collision model. As was previously mentioned, Perot & 
Chartrand chose not to integrate over orientation space thus one Reynolds stress 
equation exists for each eddy orientation vector, and the average (that is, RANS-like) 
Reynolds stress tensor is a simple average of all of the individual, per-eddy Reynolds 
stress tensors. Perot and Chartrand proposed the followings per-eddy Reynolds stress 
evolution equation (note that nomenclature has been updated from Chartrand (2005) to 
be consistent with current versions of the model): 

^+V{«t^) = 

«,,* + 2        Vtt 
V • 

(   — 

2u 
J 

1 
avq" + — 

> 
R, 

V RJ 

l.k R
kJ + UJ* + 2 °jl 

V 9 
2u l.k 

J 
R, 

(22) 

(23) 

(24) 
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*v-K 8 -^ tj 2 

V J 

+ J^+J^ (4+2?,) 
9       9 

(25) 

(26) 

(27) 

with ^ the Reynolds stress tensor (one for each eddy), q, the eddy orientation vector 

(and the quantity that makes this model look unusual compared with a classic RST 

model), turbulent viscosity vT=yjK2/Kq2   noting an over bar indicates the quantity 

averaged over all eddies, time scale l/rR=^Kq2 , Kronecker delta S„, average 

velocity un and constants CVC2 and a. Note that model also includes information 

about the rotation vector for a non-inertial frame Qk in u'k, namely u'k = ulk + etkjC)k, 

with eikj being the permutation tensor. Equation (22) is the material derivative of the 

Reynolds stress tensor. Equation (23) handles the stress tensor production, while 
Equation (24) accounts for viscous dissipation. Equation (25) provides a return-to- 
isotropy model for the Reynolds stresses (Perot & de Bruyn Kops 2006), and Equation 
(26) ensures that the Reynolds stress tensor and eddy orientation vector (qt) remain 
orthogonal, which is akin to enforcing incompressibility (Chartrand 2005). The terms 
A, + B,  represent the return-to-isotropy model for the eddy vectors and a system 
rotation term, respectively. Equation (27) is of course the viscous diffusion. It is 
instructive to examine the eddy orientation evolution equation before these other 
quantities are described: 

<7u+V(w^) = 

1 (    —    1 ^ 
avq2 + — 

*RJ 
q, 

-(Ai+Bi) 

(28) 

(29) 

(30) 

(31) 

(32) 

where Equation (28) is the material derivative of the eddy orientation vector, Equation 
(29) handles production with Equation (30) providing for dissipation and Equation (31) 
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being the standard diffusion term. Equation (31) has the eddy vector return-to-isotropy 
term 4 and rotation term Bt. 

f \ 

1=^ 
1 

1 + C2 — 
[^klSkl]qk (33) 

T J 

with constant C3  and Nh=qiqkl q2. The rotation term  5, ensures that the model 

responds properly to rotation of non-inertial frame, and is defined as 

Bt=~ 
20q2K + 0.25 (O^ 

9t (34) 

with the vorticity vector defined as Q'k =€^ukJ+fi, recalling Q, is the rotation vector for 

a non-inertial frame. 

The origins of the terms above are described in detail by Chartrand (2005) They 
are explained briefly below. The dissipation terms (Equations (24) and (30)) come from 
observations of isotropic decay. The part of the parenthetical term avq1 originates 
from low Reynolds number decay. The second term \ltR handles high Reynolds 
number decay. These are arguably the simplest terms in the model, and were 
constructed first. Next, the production terms (Equations (23) & (29)) were constructed 
using the exact linearized Navier Stokes equations for rapid distortion theory from 
Pope (2000): 

dt 

f 
ULk + 

Kikl 
\ 2ul R« + UM + 

kjk, 

\ 
'ft 

2ulk R ki (35) 

dk duk 
— = -K —- 
dt      k dxt 

(36) 

noting that k, is Pope's wave vector and that this is directly analogous to the eddy 

orientation vector qt. The similarities between the exact RDT limit of the Navier Stokes 

equations and the production terms for R0 and qt are easy to see. The production and 

dissipation terms to achieve viscous RDT. Anisotropic decay was tackled next. It is 
interesting to note that this is first time that inter-eddy interactions must be accounted 
for. Rotta's linear return to isotropy model (Rotta 1951) for the stress tensor was tested 
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first. This version varied slightly from Equation (32) in that rather than an average 
kinetic energy K being employed, the local K = \Rmm was employed. The so-called 
"global" version was also tested, and found to perform better (Perot & Chartrand 2005). 
Chartrand and Perot also tested their non-linear "EG" return model and found it 
deficient in this application, thus choosing the "global" Rotta-like return to include in 
OEC. Isotropy in OEC is not only by isotropic Reynolds stresses (on a local, per eddy 
level) but also uniform distribution of unit eddy orientation vectors on a unit sphere. 
Flows tend to distort their distribution and a method is needed to return to an isotropic 
state. Chartrand (2005) investigated six different methods, the details of which will be 
avoided here. The method employed in Equation (33) calculates the normalized 
distribution of the eddy vectors Nh and projects the eddy vectors according to the 
difference between the normalizes distribution and the isotropic normalized distribution 
represented by the Kronecker delta Su. 

The Complete Original OEC model 

The original OEC model evolves two quantities: the eddy orientation vectors, qt 

and the Reynolds stresses tfy with the kinetic energy k calculated from the Reynolds 

stresses as k = Rtt/2. The Reynolds stresses are averaged over all eddies to produce 

^ which is then used in the momentum equation. The original OEC model was posed 

as: 

^ + W-(ukRij) = P0-(ayg2+i)RiJ-RIJ
R+MIJ+Wiy + vl)WRIJ 

dt v      ' "   v *; (38) 

The first equation above evolves the eddy orientation vectors qt while the second 

handles the local (per-eddy) Reynolds stresses Rt]. Return to isotropy for qt is handled 

by q,K, defined as 

~ R 

u v i+<V*' V 

\VT) J 

(3^-4)4* 
(39) 

with Wto=[(l/W)X^,]/?,2 and constants Cj'p and Cj*. Note that C,*'*has been 

abandoned in new versions of OEC, discussed below. Return to isotropy for Rv is 

similarly handled by Rf defined as 
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p R _     1 
Rij    ~ — 1R 

^RR 

\ 

1+C«*, \VT J 

R,-K {*-¥i 
) 

(40) 

with constants CUp
m andCDn^. My combines rotation, eddy vector return to isotropy 

and a term which ensures q, and ^yare orthogonal, as shown in below: 

&,=(*,$+**$)(&*+V (41) 

It is important to note that several major nomenclature changes have occurred since 
this form of the model was created. Hats - now indicate models based on a variant of 
eddy vector (to be introduced later) and over bars now indicate averages taken over 
eddies. The eddy vector return term q,R is now denoted simply 4 while the system 

rotation term s, has become Br To be consistent, the Reynolds stress return to 

isotropy term RtJ
R is now A^ (to avoid confusing superscripts), the per-eddy local kinetic 

energy is K and the eddy-averaged (often called global) kinetic energy is simply A 
The same scheme is used for the Reynolds stresses and eddy vectors. 

Validation 

Previous work on the oriented eddy collision model has resulted in the model 
being validated across a wide variety of cases, both simple and complex turbulent 
flows. Considering OEC's implementation in OpenFOAM, numerous validation cases 
were re-run. Furthermore, several major modifications have been made to the basic 
model including the addition of terms to handle near-wall asymptotic behavior of the 
eddy vector and Reynolds stress tensor, the inclusion of a near-wall eddy rotation term 
in an attempt to capture non-local wall effects (discussed later), the removal of several 
modeling constants, and the derivation of three additional forms of the OEC model 
whose aim it is to increase the numerical, temporal, and near-wall stability of the 
model. Considering these changes, and the necessity to recreate many benchmark 
cases in a manner useable by OpenFOAM, many previously performed tests were 
once again performed, including one of the simplest cases, isotropic, homogenous 
decay: 
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Table 1: Initial conditions from de Bruyn 
Kops' DNS of isotropic homogeneous decay 

de Bruyn Kops (DNS) 
efm'/s3) 0.782 
K{m'lsJ) 0.087 
v(m2/s) 1 49e-5 

ReT 655 

*   0.04 

0.6 0.8 1 1.2 1.4 
time(s) 

Figure 5: Isotropic, homogeneous decay compared to DNS data from de Bruyn Kops , et al. (1998). 

Data from de Bruyn Kops, et al. (1998) was again employed for validation. As was 
expected, agreement between OEC and the DNS data was excellent, and more 
complex cases could be considered. 

Perfecting the system rotation term 

The system rotation term (previously s,, now 5,) was re-examined after long- 
term stability for shear cases such as Matsumoto, et al. (1991) came in to question. 
Several rotation term options were considered and their constants determined. The 
current rotation term is defined in as 
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-\ 

CfqtK+Cffa 

- 

Vt (42) 

with \/rR=(Kq2Y a decay constant, qtthe eddy orientation vector, Q' =eokukJ+Qi a 

modified system rotation vector, K the average (not per-eddy) kinetic energy, TV the 
number of eddies in the simulation and constants  c*and  c". Note the updated 
nomenclature. The model was then subjected to more complex flow situations such as 
rotating decay, a mixing layer, and several shear and strain cases. 

Table 2: Initial conditions for Wigeland and Nagib (1978). 

Wi geland & Nagib 
A B C 

Etm'/s3) 14.85 14.67 14.94 2.96 3.49 3.36 2.77 3.36 22.26 
Kfm^) 0.098 0.0975 0.105 0.045 0.0462 0.051 0.029 0.033 0.096 
v(m'/s) 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 

ReT 36 36 41 38 34 43 17 18 23 
RoT 00 7.52 1.78 00 3.77 0.82 00 5.09 2.9 

O, 0 20 80 0 20 80 0 20 80 

Wigeland and Nagib (1978) provide data which test both rotating and non-rotating 
decay, as seen in Figure 6! 
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Figure 6: Rotating and non-rotating decay from Wigeland and Nagib, case A. 
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Figure 7: Rotating and non-rotating decay from Wigeland and Nagib, case B. 
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Figure 8: Rotating and non-rotating decay from Wigeland and Nagib, case C. 

As Figure 6 through Figure 8 show, agreement is good across a range of Rossby and 
Reynolds numbers. Rotating decay was also tested with results from Jacquin, et al. 
(1990). Note that only the highest Reynolds number case is shown here as agreement 
at lower Reynolds numbers was excellent and tested extensively previously. 
Agreement with Jacquin's high Reynolds number data was excellent. 

Table 3: Initial conditions for Jacquin's rotating 
decay. 

Jacquin 
A B C 

£(mz/s3) 11.73 16.43 30.93 
KfmW) 0.153 0.288 0.444 
vfm^/s) 1 51e-5 1 51e-5 1.51e-5 

ReT 127 281 457 
RoT 1.22 091 1.10 
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Figure 9: Rotating and non-rotating decay from Jacquin, era/, with RoT =1.10 (case C). 

Finally, data taken from Mansour Cambon, and Speziale was also used to determine 
the performance of OEC's rotation terms: 

* 

* 

0      0.25    0.5    0.75      1       1.25    1.5     1.75      2      2.25    2.5 
time (s) 

Figure 10: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (A) 
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Figure 11: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (B). 
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Figure 12: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (C). 
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Figure 13: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (D). 

Table 4: Initial conditions for Mansour, et al rotating 
cases. 

Mansour, Cambon & Speziale 
A          B C             D 

£(m^sy" 0.93 0.95 
K(m2/s2) 0.964 0.977 
v(m2/s) 3.67e-2 1 49e-2 

ReT 27.2 67.1 
RoT 0.37     0.037 0.24         0.1 

The model agreed well with available data (mostly from direct numerical simulations) 
and mixing layer data from Winckelmans, Jeanmart, and Carati (2002) was used to test 
the model's ability to capture the decay of kinetic energy and dissipation which differs 
spatially. Kinetic energy results are shown in Figure 14 and dissipation results in Figure 
15 . Carati's data is unique in a sense that we have access to both the kinetic energy 
and the dissipation rate. OEC's prediction of the decay of both the average kinetic 
energy K and average (calculated) dissipation 

s^^(q2K)va+K% (43) 

is quite close to Carati's at t = 0.171 seconds. However, the model seems to slightly 
over predict the kinetic energy at the later time and under predict the dissipation. 
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Figure 14: Decay of kinetic energy versus position at three different times from Carati, et al. (2002). 
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Figure 15: Decay of dissipation versus position at three different times from Carati, ef al. (2002). 
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OEC in the Rapid Distortion Theory Limit 

The addition of orientation information to OEC enables the model's unique 
ability to capture turbulence in extreme circumstances, such as those described by 
rapid distortion theory (RDT). Pope (2000) covers this subject in detail. Amongst the 
RDT cases considered and used for validation were the following: Axisymmetric 
expansion, akin to an expansion in a wind tunnel in transverse directions; axisymmetric 
contraction in which the turbulent flow is contracted in the transverse directions, plane 
strain, and finally shear. The four cases are summarized in Table 5: 

Table 5: RDT cases used for testing OEC in FOAM. 

Axisymmetric 
contraction 

Axisymmetric 
expansion 

Plane 
Strain 

Shear 

*.. 5 -25 5 0 

R22 -is 
2 

5 -s 0 

R32 -is 
2 

S 0 0 

Rl2 0 0 0 5 

Sm(2S„S9)
m J3S 2>/35 -25 25 

0.1 

—i 1 1 r 

OO Theoretical - R« / K° 
OO R22 / K° 
OO R33 / K° 
 0.5*exp(X) 
— OEC 

i I J L I 

0.2     0.4     0.6     0.8       1        1.2      1.4      1.6     1.8       2 
Sxt 

Figure 16: OEC subjected to plane strain and compared to theory (Pope 2000). 
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Figure 17: OEC subjected to axisymmetric expansion and compared to theory (Pope 2000). 
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Figure 18: OEC subjected to axisymmetric expansion and compared to theory (Pope 2000). 
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Figure 19: A closer look at the behavior of the normalized stress component R22 compared to theory 

(Pope 2000). 

OEC in Shear Flow 

After testing each term in the model, OEC was subjected to homogeneous 
turbulent shear flow in order to compare with data available from Matsumoto, Nagano, 
and Tsuji (1991) as well as L. Le Penven, J. N. Gence, and G. Comte-Bellot (1985). 
This provided a means of testing the model as a whole while remaining geometrically 
simple and not requiring wall boundary conditions. 

Table 6: Summary of shear flow cases used to validate OEC 

Matsumoto LePenven A LePenven B 
SK/e 30.6 4.71 0.43 0.33 
ReT 18.18 152 612 846 

Strain 
Tensor 

(0   28.28   0N 

0       0       0 

1°       °       °, 

(0   30   0N 

0     0    0 

s°     °     °> 

'5.48      0         0   ' 

0      1.99       0 

^  0        0      -7.47; 

'8.86       0          0  "j 

0      -2.36      0 

,  0          0       6.50j 
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Figure 20: Comparison to data from L. Le Penven, J. N. Gence, and G. Comte-Bellot, case A. 
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Figure 21: Comparison to data from L. Le Penven, J. N. Gence, and G. Comte-Bellot, case B. 

Results for Matsumoto, et al. (1991) low Reynolds number flow, ReT =18, are shown in 
Figure 22: 
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Figure 22: Shear data at a turbulent Reynolds number ReT = 18 from Matsumoto, Nagano, and Tsuji 
who provide data for the time evolution of the anisotropy tensor. Time in non-dimensionalized by the 
shear, S. 

The model agrees quite well with the data provided from Matsumoto, et al. (1991). 
Results for higher Reynolds number ReT=\52 flow, for a much longer span of 

characteristic time scale St, is shown below in Figure 23: 
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Figure 23: Shear data at a turbulent Reynolds number ReT =152 from Matsumoto, Nagano, and Tsuji 

who provide data for the time evolution of the anisotropy tensor 4, 
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Again, agreement is excellent with Matsumoto's data. With the successful 
benchmarking of OEC with Matsumoto's shear case, the model was ready for further 
development. Of course, solid boundaries are always a concern with RSTM-like 
models, and are currently a subject of intense research. Before tackling that problem, 
however, the problem of temporal stability will be addresses. 

Temporal Stability 

Increasing the temporal stability of the code was addressed next and a 3rd order 
low-storage Runge-Kutta time marching scheme was successfully implemented and 
tested in OpenFOAM. For temporal discretization, the program utilizes a three step 
Runge-Kutta time marching method (RK3), which is second order accurate. Denoting 
intermediate solution steps as y and y, we arrive at the following low storage, second 
order accurate form of the hybrid RK3 found in the code: 

y i = yn + 
n+- 

2 

-At U  ) •fW 

yn+x =yn+{&)•/ p+1 

y^-yn+L
+[\^jf(y^) 

(44) 

where y  , represents the intermediate velocity (flux), pressure, Reynolds stress, eddy 
M+— 

2 

vector, or kinetic energy information. The first step of RK3 uses the explicit Euler 
method to arrive at a solution at one half the time step. The code then uses this 
midpoint solution to leapfrog to the end of the time interval. Finally, it performs another 
Euler step to arrive at a solution at the next time step. The low storage method trades 
off accuracy for minimal storage. Only two arrays need be stored for any given 
calculation, the solution from the previous step,.yn, and the result of the previous 

intermediate step y or y. Implementing this method in to OpenFOAM was done for 
OEC specifically, and not in a general form. OpenFOAM allows for runtime selection of 
time stepping schemes, but is currently limited to one step schemes such as explicit 
Euler or second order schemes such as Crank-Nicholson. As such, any higher order 
scheme such as RK3 must be added to FOAM. 

As was the case with boundary conditions (discussed below), there are 
generally two approaches to implementing a new feature in FOAM. The first is to spend 
the effort of creating a generic, templated entity (in this case a time derivative scheme), 
fold this code in to the existing framework, and then call the method. While more 
attractive to the general user, the time required to do this is often not worth the reward. 
In this case, the RK3 scheme was "hard coded" in to   OEC and employ's FOAM's 
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explicit Euler time derivative scheme for temporal sub-stepping. FOAM stores the 
previous values for a given entity (such as an eddy vector) making implementation 
easier. Old values can be easily recalled, and in certain circumstances FOAM's default 
behavior can be overridden using the ".storeOldTime()" function. This was especially 
useful when constructing the RK3 scheme in OpenFOAM as there are a good number 
of intermediate arrays to be stored for the Reynolds stress tensor, eddy vector, kinetic 
energy, and velocity at each cell for every eddy. Future work on OEC in OpenFOAM 
may include the development of a general Runge-Kutta time marching scheme for 
users of the model and the general public. 

Solid Boundaries 

After temporal stability issues were overcome, effort shifted to slip and no-slip 
boundary conditions. These are imperative for wall-bounded flows or flows over objects 
which are of paramount importance to engineers and are the focus of our current work. 
The model is currently being tested using benchmark cases such as turbulent Couette 
flow, turbulent channel (Poiseuille) flow and a backward facing step. In addition, more 
complex cases such as flow around an oblate spheroid have been considered. 
Preliminary work on turbulent flow {Re = 5000) over an oblate spheroid using OEC 
running in parallel on four processors is shown in Figure 24 and Figure 25 : 

Figure 24: Velocity streamlines from turbulent flow over an oblate spheroid using the OEC model. The 
spheroid's surface is no-slip while the domain walls are zero gradient. 
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Figure 25: Velocity streamlines from turbulent flow over an oblate spheroid using the OEC model. The 
wake can be easily seen in this slice. 

Trials continue with simulations over solid boundaries including turbulent Couette flow, 
turbulent channel flow, and flows over an oblate and prolate spheroid. 

Modifications for near-wall stability 

Unfortunately, as is the case with many Reynolds stress transport models 
(RSTM), problems arise when walls are introduced as both the Reynolds stress and 
kinetic energy become zero at the boundaries. In order to maintain stability at walls, the 
OEC model was recast to evolve the Reynolds stresses normalized by the kinetic 
energy, R'tJ =RtJ/ K. This necessitated an evolution equation for the kinetic energy K 

as well. The eddy orientation vector equation was unchanged. The new casting of the 
OEC model became: 

*$ 

dK 
dt 

V\ujK) = -KMk.-
X-{a-vq2+i;)K 

+ P'K - A*K + M*K + V(v + v,) VK 
(45) 

-(^-^•)+(A<;-/?X)+V.(V+V/)V/?; 
(46) 
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noting that the equation for q, is unaltered and that Cp = 2. The first equation above 

evolves the per-eddy kinetic energy A:. In Equations (45) and (46), P* is the same as 

Pg except it involves /?* as opposed to Rv which is true for M't] as well. P' = 0.5/>' and 

similarly M*=0.5M,'. The Reynolds stress return to isotropy term A'v is slightly 

different from the one found in the original OEC model, as shown in below: 

• D 

c Up 
RR 

V "*    \yr)J 
<-§(*-¥) (47) 

noting that the average kinetic energy K is normalized by the local (per-eddy) kinetic 
energy A:   Evolving /?* allows the per-eddy Reynolds stress Rvto be calculated via 

Ry = R'jK which does not present problems when K = 0. Once complete, the new#,, K, 

R'j ("qkRStar") casting of OEC was tested using the same cases that were employed 

for the original qt, RtJ ("qR") model. Results from the two models matched closely. 

Near-wall behavior of turbulent eddies 

In addition to ensuring stability at walls, it is necessary to ensure that the eddies 
(i.e. the eddy orientation vectors and subsequently the per-eddy Reynolds stresses) 
interact with the region near a wall (the large-scale damping effect). In addition, the 
eddies must align themselves properly to ensure they are not embedded within the 
wall: 

/;;/;// 
$ 

777-77T7 ////J///S S/// 

wall 
Figure 26: Eddies that intersect solid boundaries must be rotated out of the way. A) This rotation 
preserves the magnitude of the eddy, which does not affect the near-wall dissipation. B) This scaling 
achieves the same goal, but affects the near-wall dissipation. 

As such, an additional term is effectively added to (although not explicitly stated in) 
both the qt and Ry or R'tJ equations. One method rotates the eddy vector away from 

the wall while maintaining its magnitude, shown in Figure 26 A. This method does not 
affect the near-wall dissipation by maintaining the length scale (eddy vector 
magnitude). A second method, illustrated in Figure 26 B, changes the magnitude of 
the eddy vector, which of course affects the eddy vector magnitude (by decreasing it) 
and thus the near wall dissipation.   For the first case, the angle between the old and 
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new eddy vectors is calculated and Rodrigues' rotation formula applied to align Ry or 

R'/m with the new eddy vector incompressibility (i.e. orthogonality between 9, and Rv or 

R'j). Implementation details and the algorithm employed to perform this rotation are 

discussed later. 

The presence of walls in a turbulent flow imparts so-called non-local effects on 
the flow, specifically affecting turbulent redistribution. Durbin (2001) discusses two of 
the most common methods that near-wall modeling is achieved, pressure echo and 
elliptical relaxation. Both methods seek to alter turbulence quantities near to but not at 
a wall in order that the model return more realistic results. Solid boundaries tend to 
cause regions of strong inhomogeneity, production and shear. The region acts to 
suppress wall-normal turbulence, which can have a drastic effect on the nature of the 
near-wall Reynolds stress tensor. Unfortunately, most RSTMs lack a mechanism to 
ensure this behavior, thus special consideration must be made. OEC is no different, 
and the aforementioned "near wall rotation" of the eddy vectors is this model's novel 
solution to the problem. Great care must be taken when attempting to use RST models 
near solid boundaries where the velocity and Reynolds stresses tend to zero. At the 
moment, wall functions and damping are the most popular methods employed to 
handle solid boundaries. Not only is it imperative that the value at the boundary be 
prescribed, but the model must also behave properly as it approaches the wall, 
meaning the model's asymptotic behavior must be considered. If the fluctuating velocity 
is considered to be a smooth function of the distance from the solid boundary >>, then it 

can be expanded as a Taylor series, viz. w, = p, + q,y + rty
2 with/?,, q,, and rt functions 

of the wall-tangent directions, and truncating higher order terms. If the velocity at the 
wall is zero, w,(j> = 0) = 0, then p, =0 which implies w, and w3 (in the tangential x and 
z directions, respectively) approach the boundary like y. Furthermore, if continuity is 
invoked, it is found that velocity in the wall normal direction u2 approaches the wall 

likejy2. Using this information, the near wall asymptotic behavior of the individual 

Reynolds stress tensor components can be assessed:   M,W, ,   u3u3,  and   M,M3   will 

approach like y2. uxu2 and u2«3 will go like y\ and u2u2 like yA (Durbin 2001, Pope 

2000). It is not trivial to ensure this behavior, and is an area of active research for the 
Oriented Eddy Collision model. The near-wall region creates other difficulties: the 
highest shear rate is often located at a solid wall, and the normal velocity being forced 
to zero at the wall tends to affect the flow away from the wall via pressure (often called 
"wall blocking"). 

Another subtlety which arises when implementing wall boundary conditions for 
the eddy orientation vectors q,. At a shear free (slip) wall, the eddies align themselves 
to be tangential to (in the plane of) the wall and the magnitude of the eddy should 
remain unchanged. At a no-slip wall, however, the eddy size should approach zero. 
Considering qi has units of 1 / length, an eddy of zero size would correspond to a g,of 
infinity. In order to avoid this problem, the OEC model has once again been re-cast to 

36 



evolve the eddy length itself, Lt=q lq2, which has units of length and thus can be set 

to zero at no slip walls. This will be covered in the next section. 

Avoiding Troublesome Boundary Conditions 

Numerous changes have been made to both the OEC model and its 
nomenclature, most of which centered on casting the model in such a way that it would 
be stable at solid boundaries and numerically tractable. As mentioned previously, 
evolving a quantity like the eddy vector  qt   (hats will be dropped  hereafter)  is 
troublesome as the quantity goes to infinity at a solid boundary if the eddy length scale 
goes to zero. This is a problem separate from near-wall local effect discussed in the 
previous section. Since its initial casting and subsequent modifications with a 
normalized Reynolds stress tensor, several changes have been made to the 
nomenclature as well as a symbolic representation of the near-wall rotation performed 
on the eddies. The original eddy orientation evolution equation, in its current form: 

Dt 
= -w k,i 

f        —        1   ^ 2 avq + — 
V R J 

<r,-(4+^)+i[("+v,)g<Jk]J.+»; (48) 

with near-wall rotation term Wt. The current form of the return to isotropy term for the 

eddy vectors A^: 

A = C-± vT+C?v 
{^Sh]gk (49) 

with the isotropy tensor Nh = q,qk/q
2 determining the departure of the eddy vectors 

from theory original (spherical) isotropic condition. The current system rotation term 
B, is defined as: 

M/) iq7 

20.0tf2£ + 0.25(Qt') 
q, (50) 

recalling the time scale is defined as 

and the turbulent viscosity as 
t-m 
vr = K2 

Kq 

(51) 

(52) 
V-"^   J 
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Note that, for simplicity's sake, the hats (which previously indicated a "per-eddy" 
quantity) have been dropped. In addition, the previous rotation constants have been 
hard coded as C§ = 20.0 and C" = 0.25. The corresponding Reynolds stress tensor is 
currently posed as 

£5L 
Dt 

ut,k + 
mi 

\9 
2 vtt 

2ui R,+ i^-^ 
2uU 

j 
R, 

avq1 + — Rij-Aij+MiJ+[(v + v,)RiLk]i 

-D(v+vt) 5L 
K 

m,-B(v+v,fik^X,+W9 

(53) 

with near wall rotation term Wv responsible for rotating the Reynolds stress tensor, 

using Rodriguez's' rotation formula, to be aligned with the rotated near-wall eddy. The 
return to isotropy term for the Reynolds stress tensor, now written 4/. takes its final 
form as 

vT+cy 
( 

Rij-K *i 
Mj 

V 

(54) 

noting the change in nomenclature for the two return constants C^ and CA°". It is 

important to note that one return constant was eliminated, and CA°" is common to both 
the eddy evolution equation and the Reynolds stress equation. In fact, all model 
constants remain consistent through the various versions presented here. A term is 
required to maintain orthogonality between the eddy vector and the Reynolds stress 
tensor (a condition which is also enforced by the near wall rotation term if it acts upon a 
given eddy vector and stress tensor in the domain). This term is written as 

Mtj = R «i-+R*L (4+5,) (55) 

with A, and B,the eddy vector return to isotropy and system rotation terms defined 
above. D and E are numerical constants, currently set to D = 2 and E = 0. 

As was mentioned previously, the requirement of infinite boundary conditions applied 
to  the  eddy  orientation  vectors   q,   led  to  the  re-casting  of OEC   in  terms  of 

L, = qtIg2which has solid boundary conditions of Z,,=0.  Note that a hat  -   now 
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indicates a model quantity based on Z, rather than qi The evolution equation for the 
new eddy vector: 

^=-K-2^)(^)4(H^)-2"     v 
L\,K, i 

•« 
(56) 

with ffnonce again representing the near wall rotation term, which will be discussed 
later. Similar to the original form of the model, the return model is cast as such, noting 
that additional tuning using high Reynolds number shear flow from Matsumoto was 
employed to remove a tuning constant from the numerator: 

K-± vT+C?v [3#i.- 'kn (57) 

noting the isotropy tensor N^ls now defined as 

#* = 

(        \ 

(') W    / J 
and the turbulent viscosity is cast as 

The time scale is now written 

vT = 

( 

'41 
I _ 'lE* 

V J 

(58) 

(59) 

(60) 

The system rotation term for the I, -based model becomes 
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(61) 

Note  that   1 
\L2) L2 rR 

Lt   above  is  an  approximation.   The  exact 

derivation (or conversion) from the qt -based model to the L,-based model returns a 

dissipation  term   similar  to  that  in  the  original  casting   of the  model,   namely 

Z,, with several additional terms added the I, evolution equation: ovf-U+J- {    \L2J   rMt 

-\(v + tr)UL\hk+l(v + vT)L 
fi   \ 

\L J,k 

'L\ 
A* 

(62) 

These terms may be of some significance near solid boundaries and are the subject of 
future work. With the above model for the eddy length scale Lt, a corresponding model 

for the Reynolds stress tensor, now based on Z,,, can be constructed: 

DR.. u 

Dt 
f 

"<.* + 

av 
KL2) 

-D(v + vt) 

+ J- 

5L 
K 

L2       " 
2ul ^ + WR£-*, 2ui R> 

RIJ-Atj+Mlj+[(v + vt)Rlj,]k 

(K\k -E(v + yty ^'k' ^Rij+WtJ 

(63) 

Note the similarities between the version of the stress tensor evolution equation based 
on the original eddy vector 9, and its current form. Now, rather than denoting local, 
"per-eddy" quantities with a hat, we denote quantities based on the new eddy length 
scale L, with a hat. The return to isotropy of the Reynolds stresses based on Z,, is 
written as 

c. 
4 = 

v, 

vT+CD/v 
Rtj-K 

(       LtLA 

v J 
(64) 
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and the corresponding orthogonality term 

Mf=(Vt+^)(4+4) (65) 

As was discussed in the previous section, a version of the model was also formulated 
for the evolution of the Reynolds stress tensor normalized by the kinetic energy, 
Rj • RtJIK where the star notation indicates that the stresses have been normalized. 

The current version of R* based on the original eddy vector qt: 

£5L 
Dt «,.* + v v 

2«,* 
J 

K+ UM + 5jl \2ui,k /?: 

«».*+ MJ- *„ j 2«; /?; *; - 4/+M;+[(V+vj *;, ] 

^-^(v+v,)^]   W 

£ 

(66) 

with the return to isotropy term defined as 

4/ = 
'4 

vT+C> *;- 

/• 

V 

4,4, 
\ 

A: (67) 

and the orthogonality term 

M; = Ktj — + Ku T 
v    9 9 y 

(4+*/) (68) 

Note that model terms based on the normalized Reynolds stress tensor /?* also carry 

with them an asterisk *. Employing a normalized stress tensor 

DK 

Dt *.+ **-* 
2"/l* R»- avo2+ — f-^+i". 

+[(v+vr)A^-£(v+vr)<Mi 
(69) 

41 



As a fourth and final version of the OEC model, a version which combined the new 
eddy vector I,and the normalized Reynolds stress tensor Rv'was created in hopes that 
the two variations would provide the most stability near solid boundaries: 

DIC 
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"a + v T2        °il 
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Un,k + 
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R kn ^-V+*;+[(v+^x»l» 

+(2-D)(v + vt)[Rl~ (A 
*   K 

(70) 

where once again D and is a numerical constant set to D = 2, this zeroing final term in 
the evolution equation and avoiding potential numerical stability issues. The return to 
isotropy term for the Reynolds stresses corresponding to the normalizes stress tensor 
model based on L.: 

" T 
iDn. 

Lvr+CJ-i K- 
( V, 

(71) 

with the orthogonality term written as 

M;=(4A+^)(4+A) (72) 

As was the case with the previous normalized stress tensor variant of OEC, an 
evolution equation for the kinetic energy K is required. In this case, this equation is 
constructed using the eddy length scale Lt: 
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Dt %+ir-^ 2"/.. 
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av\ K~2^ + 2^" 

+[(v+vT)KJt\-E(v+vT) 
(K)A&) 

(73) 
,t 

K 

The above four versions of the Oriented Eddy Collision model constitute the most 
current version of the model under development in OpenFOAM. Considering the 
difficult nature of capturing such a flow, the high Reynolds number Matsumoto case 
was used to compare the performance of the each model: 
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Figure 27: Taking another look at the Matsumoto ReT = 152 shear case, this time comparing all four 
model variants presented above. All four models show excellent agreement. 

As seen above in Figure 27, the three additional models match the original "qR": 
"qkR*", which normalizes the stress tensor by the kinetic energy and has a transport 
equation for the kinetic energy, "LR" which used the eddy length vector L, rather than 

the original q,, and "lkR*"which employs both the eddy length vector Lj and the 

normalized stress tensor RfJ* = RiJ/K. 

The terms preceded by D and E are relatively new to the model (as compared to 
previous versions) and warrant discussion. The first involves the gradient of a 
Reynolds stress tensor. For models without normalized stress tensor these terms are 

and 

-D(v+vt) 

-E(v+vt) 

4 
K (K), 

K      K R, 

(74) 

(75) 

in the Reynolds stress equation (for both models based on qt and Lt). For those 

involving the normalized Reynolds stress tensor RtJ *, the term of interest in the 

Reynolds stress equation is 
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(2-D)(, + ,,)[*-]^ (76) 

The "extra" term in the kinetic energy equation is 

-E{v + vTy   ^   h (77) 

The terms in the Reynolds stress equation (Equations (74) and (75)) and by extension 
that in the normalized Reynolds stress equation (Equation (76)) come from expanding 
the last term in the original OEC formulation (Equation (12) ) and helps ensure the 
near-wall asymptotic behavior of the model. Note that D is often chose to be 2, thus 
eliminating the extra term in the Rv*, which is desirable considering it can cause 

numerical difficulty near walls. E is chosen to be zero in an attempt to ensure that 

q2(\he   average   eddy   vector   magnitude)   approaches   a   solid   boundary   like 

(2/a)Iy2where alpha  is a tunable constant,  usually set to   a = 15.0.   Note that 

OpenFOAM currently does not support tensors above rank two, and the 
implementation details of this term will be discussed later. 

Implementing OEC in OpenFOAM 

What is OpenFOAM? 

The majority of the initial effort in this project focused on implementing the 
oriented eddy collision model in an open source collection of computational fluid 
dynamics libraries written in C++ called OpenFOAM. FOAM is unique in that much of 
the mathematical and numerical framework required to perform advanced CFD is 
already in place, available for any user to copy and modify for their own needs. Despite 
having a vast assortment of CFD-related tools, solvers, and utilities, the latest version 
of OpenFOAM (version 1.7.1 from OpenCFD LTD) has few Reynolds stress transport 
model implemented. In fact, it has only two: The Launder, Reece, and Rodi (1974) 
model and a variant, the Launder Gibson RSTM. Adding the OEC model to FOAM was 
not trivial, as no other model currently in FOAM must account for two to three transport 
equations for every eddy at every cell. This amounts to an entire collection of transport 
equations that must be carefully handled within FOAM, and is the first construct of its 
type to be implemented in FOAM. In its current form, OEC employs anywhere from 22 
to over 1,200 eddies for simulations. The number of eddies available to the code is 
controlled by how the eddies may be arranged uniformly on a unit sphere. 
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fvm::ddt(qiINT) 
- (1.0/3.0)*fvm::laplacian(dEfff(), qiINT) 
+ (1.0/3.0)*ffvm::SuSp(((alpha*nu()*qsq + tauR)), qiINT) 

- fvo::div(phi_, qiINT) 
( qiINT £ fvc::grad(U) ) 

Si 1 

Figure 28: FOAM provides a vast collection of operators to streamline the numerical side of 
implementing a turbulence model like OEC. 

Figure 28 illustrates the power of OpenFOAM in that the software provides a wide 
variety of useful operators which eases the task of implementing a complex model 
such as OEC. The entry above constructs the evolution equation for qt, and is 
contained within FOAM's "fvVectorMatrix" entity, the "fv" indicating "finite volume". 
Similar entities for tensors, "fvTensorMatrix" and scalars, "fvScalarMatrix" exist. All 
terms on the left hand side of the equation are cast implicitly, and are part of the matrix 
on the left hand side of the system to be solved which can be thought of as Ax = b with 

Aa rank two tensor (matrix) which must be inverted, *the vector of unknowns, and 

b the vector of known on the right hand side. Operators such as "fvm::ddt" easy to 
identify: "ddt" takes the time derivative of its argument, in this "qiINT" which is the eddy 
vector for the current eddy. Note that transport equations such as this are constructed 
for eddy vectors, Reynolds stress tensors, and in some cases the scalar kinetic energy 
for every eddy at every cell location in the computation mesh. In FOAM, "fvm::" casts 
the operator in the "finite volume method", which essentially places the operator (and 
resulting term) on the left hand (implicit) side of the equation, in A. For example, the 

Laplacian operator (used for the viscous diffusion term) is cast implicitly for stability 
purposes. The "SuSp" operator makes a decision about the location of the source term 
(and thus whether it is cast explicitly or implicitly, placed in b or A) based on its sign. 

Alternatively, operators may be cast using "fvc::", standing for "finite volume calculus", 
which is an explicit casting. This can be thought of as placing the resulting term in b. 
For example, the convection term is handled with a call to "fvc::div", which performs an 
explicit divergence operation on the flux "phi" and the eddy vector. The eddy vector 
production term -gkukl employs an explicit gradient operator (there is no such thing as 

an implicit gradient operator) along with FOAM's inner product, "&". Finally, explicit 
source terms such as the return-to-isotropy  Al  and rotation term  5,, which are 

constructed beforehand, can simply be added directly to the equation. 

Initial conditions for eddy vectors 

A variety of initial conditions for the eddy vectors q, and L, are available for use 
with OEC. These initial conditions are in the form of a collection of vectors which are 
uniformly distributed on the unit sphere. These vector lists were originally created by 
Chartrand (2005) and have been adapted for use in OpenFOAM. The number of 
eddies employed in a given simulation is akin to the size of the statistical sampling 
space given to the underlying probability density function evolution equation underlying 
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the model. In theory, the more statistical sample space (eddies) given to the model, the 
better representation of the underlying physics is returned. This, however, comes at a 
cost, one which is brought to light as the details of implementing such a system in 
OpenFOAM are considered. Specifically, a system is required by which an arbitrary 
number of eddy vectors may be used in any given simulation. Based on the number of 
eddies (N), each cell in the computational domain must be populated with N Reynolds 
stress tensors, N eddy vectors, and N transport equations for each. In addition, model 
variants that employ the normalized stress tensor R' = RtJl K require a third transport 

equation for the scalar kinetic energy. Two to three transport equations for each eddy 
at each physical location in the computational mesh (i.e., at each cell) requires precise 
accounting. Pointer lists are employed for this purpose in FOAM. For some number of 
initial eddy vectors N, a pointer list with N entries is constructed for the eddy vectors 
themselves, for the corresponding Reynolds stress tensors, and if necessary for the 
scalar kinetic energy. A subtlety arises in this implementation, which will be discussed 
in the next section. 

As mentioned above, the eddies are arranged on a unit sphere and are thus unit 
vectors. Considering the magnitude of the eddy vectors governs the dissipation, these 
vectors must be scaled before they are evolved and employed in the evolution of the 
Reynolds stress tensor. The initial eddy vectors are scaled by the positive root to the 
following quadratic equation (with roots /?): 

£W a fi2+ (*•) ?. 0 = vRer° 
(78) 

with K° and Re,, the initial kinetic energy and turbulent Reynolds number, respectively. 
Setting the initial kinetic energy and turbulent Reynolds number in turn sets the initial 
desired length scale (or eddy vector magnitude), which can be thought of as the initial 
dissipation present in the flow under consideration. Note that the average eddy 
magnitude is calculated by 

mm iSM (79) 

where N is the number of eddies employed in a given simulation. For the model 
variants which employ the alternate length scale L, (the "LR" and "LkR*" models), 
Equation (78) can be replaced by 

1 V v— > 
C, 

L2j 
K a />'+ 

(rj 
ft= 

vRe,1 (80) 
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again noting that with |A| = [(1/AD£(Z,2)]2 simi|ar to Equation (79) above. The per- 

eddy Reynolds stresses are scaled by the user-set initial average Reynolds stress 

tensoritf once the eddy vectors have been properly scaled: 

Ry'
c=3 

- g,-(*j-gt) qj-(*l-qk) g, •(<•?,)    J 
•s>r 6,J- 

\ (~Sa\ R kk 

\     J 
(81) 

Again for the for the "LR" and "LkR*" variants, the initial Reynolds stresses are : 
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(82) 

The turbulent Reynolds number Re/ is recalculated once it is employed for the initial 
eddy vector and stress tensor scaling: 

Re/= — = -r ve 
K 

1 X(?2tf)m+ **!*, | 
N 

(83) 

And for the "LR" and "LkR*" model variants: 

Re/= — = -P 
VE 

—2 
K 

izl K 
N 

va + 

3 

K2 
(84) 

The somewhat unusual form of the turbulent Reynolds number formulations in 
Equations (83) and (84) comes from the fact that the OEC model has no specific 
prescriptions for the dissipations, thus requiring the complex denominator. 

Pointer lists 

For every cell in a computational domain, there exists a collection of eddies in 
that cell. For every eddy, there is an associated eddy vector which has an evolution 
equation, an associated Reynolds stress tensor with an evolution equation, and a 
scalar kinetic energy which has an evolution equation if the "qkR*" or "IkR*" model 
variants are employed. This concept is illustrated in Figure 29: 
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 I III 
Figure 29: Schematic diagram of a collection of eddies that may exist in some turbulent flow. Note that 

each set of eddies exists at every cell in the computational mesh. 

Three pointer lists, of length N (where N is the number of eddies originally seeded in 
the flow) are constructed. One is populated with FOAM's "volVectorField" entity, which 
stores a single vector at every cell location, responsible for handling the eddy 
orientation vectors. A second contains a "volSymmTensorField" array, which stores a 
six component symmetric tensor at every cell, handling the Reynolds stress tensor. 
The third (when needed) is a FOAM "volScalarField" which, not surprisingly, stores a 
scalar at every cell location, in this case containing the kinetic energy. The 
aforementioned subtlety comes when considering the way in which this information is 
accessed. Considering each pointer list entry is assigned to a specific eddy, operations 
performed across the entire computational domain are performed one eddy at a time 
because the pointer lists are iterated through on a per-eddy basis. To understand this, 
imagine selecting only the large, downward-pointing eddy in Figure 29 at every cell 
location and manipulating one of its associated quantities. The alternative of course it 
to pick one cell (perhaps the center cell in Figure 29) and select every eddy at that cell, 
manipulating some eddy's associated value at that cell alone. This has advantages and 
disadvantages. Accounting for the many, many tensors, vectors, and scalars in any 
given flow is trivial, as each pointer list is of size N, each entry corresponding to the 
kinetic energy for one eddy at each cell, one eddy orientation vector at each cell, or 
one eddy's Reynolds stress tensor at each cell. This makes performing averages over 
all eddies as simple as a summation over all pointer list entries and a division by N. 
This choice makes operations that must be performed on every eddy at a given cell 
much more difficult, however. Such operations are rare, but require extensive looping 
over each pointer list at each cell location, an expensive operation. 

Rij_[eddy][cell].xx( 
v. J ~^r 

Component (11 In 
this case) 

Location in mesh Pointer list with an 
entry for every eddy 

Figure 30: Using variable-sized pointer lists for per-eddy quantities in FOAM. 
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One of the most powerful and useful features of OpenFOAM is the ability to 
access and manipulate the components of a vector or tensor field across an entire 
mesh (i.e. across all cells and boundary patches) without the need to explicitly access 
each cell location. In fact, FOAM's namesake, "field operation and manipulation", 
betrays the power of this ability and makes the implementation of such a complex 
model much simpler in C++. Unfortunately, this feature may only be used if access to 
one eddy's components across the entire computational domain is required, and not 
the opposite, where the component of all eddies at a single cell is required. In Figure 
30, the pointer list addressing is illustrated. If it is sufficient to access a given eddy's 
components (or other associated entities, such as "correctBoundaryConditions", a 
function that updates or recalculates a field's boundary values) the cell addressing may 
be omitted altogether, greatly increasing the efficiency of all such operations. 

Gradient of a rank two tensor 

The evolution equations for both the "standard" and normalized Reynolds stress 
tensor, for both includes a term that involves the gradient of the Reynolds stress 
tensor, as shown in Equations (85) and (86). This is a rank two tensor, and its gradient 
produces a rank three tensor. Unfortunately, as of OpenFOAM 1.6, rank three tensors 
were not accommodated for. The templating was in place, but no operators could 
handle such an entity, including the gradient operator. As such, either an operator must 
be created that could return a rank three tensor, or a custom function written that could 
perform the calculation required in the model. 

-D(v + v,) 4 
K (K)jt (85) 

-U 

^-^(v+v,)^]^ (86) 

The first choice, extending the existing gradient operator to handle any rank two tensor 
would require immense effort (to make this operator sufficiently general and interface 
with the existing operator templates in OpenFOAM) and thus was deemed more effort 
than it was worth. The second option, writing a custom function to perform the desired 
gradient in this model was instead completed. Specifically, the function was created to 
calculate the inner product of the stress tensor gradient (a rank three tensor) and the 
gradient of the kinetic energy (a rank one tensor) which results in a rank two tensor. A 
code snippet from the function is provided in Figure 31: 
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forAll (mesh_.C(), call)       // internal calls 
< 

Rx[cell].x() - Rtmp[call] .xx() 
Rx[cell].y() - Rtmp[cell] .xy() 
Rx[cell].z() - Rtmp[cell].xz() 

gradKgradR[cell] . xx () - ( gradK[call] .x () *gradRx [call] .xx () 
+ gradK[call] .y() *gradRx[call] .xy() 
+ gradK[cell] . z () 'gradRx[cell] xz () ); 

gradKgradR[cellj . yy () - ( gradK[cell ] . x () *gradRy [cell ] yx () 
+ gradK[call] .y () *gradRy [call] .yy() 
• gradK[cell] .z () *gradRy [cell] .yz () ); 

gradKgradR[cell] . zz () • ( gradK[call].x () *gradRz [call] .zx() 
+ gradK[cell] . y () *gradRz [cell ] .zy() 
+ gradK[cell] .z () *gradRz [cell] .zz () ); 

Figure 31: An example of the custom function written for calculating the gradient term from Equations 
(85) and (86). Note that looping over all cell locations may be avoided in circumstances when 

Future work on OEC in OpenFOAM may include the creation of a template, generic 
gradient operator that can take a rank two tensor as an input and return a rank three 
tensor. 

The PISO loop 

Most non-steady state solvers in OpenFOAM use the so-called pressure implicit 
with splitting of operators ("PISO") loop to correct the pressure term, details of which 
can be found in Ferziger and Peri6 (2002), Anderson (1995), Rusche (2002) and 
Jasak (1996). The basic algorithm is contained within many OpenFOAM solvers and is 
augmented with equations from Ferziger and Peric (2002), Rusche (2002) and Jasak 
(1996). To begin with, the momentum equation is constructed keeping in mind that the 
flux (of the velocity) is treated explicitly using the last known value of the velocity. The 
momentum equation is then solved using the last known value of pressure on the right 
hand side. This results in a velocity field that is not divergence free, but approximately 
satisfies momentum. The velocity at some node P is obtained by solving the linearized 
momentum equation (Ferziger and Peric 2002): 

A>:;+z*>«=Q:r-]dpm^ dxt  Jp 
(87) 

and is expressed as (Ferziger and Perid 2002): 

em—]       X '    ill, ..m* 

v = 
Ap J\.p 

dpm- 
(88) 

Jp 

with 0u
m~'the collection of source terms that can be computed using velocity at time 

m-\ in terms of the velocity «,ml (where the superscript m in u,m is the current estimate 

to the solution to the velocity w,n+1 at time « + l) and / denoting the neighboring points 
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from the momentum equation discretization. A"1 contains the coefficients based on the 

old w, at neighboring node(s) /, while A"; is the same for the current node in question. 

ufj, and «"' represent the current solution to the velocity at the node in question and 

surrounding nodes, respectively, and the * is meant to indicate that current solution is 
not the final solution and therefore does not satisfy the continuity equation. 

After the momentum equation is set up and solved, the PISO loop begins and 
performs a given number of corrector loops. First, from the last solution of velocity, the 
diagonal terms are extracted from the matrix and the reciprocal is calculated and 
saved. Then, a Jacobi pass is taken and the velocity updated (see Jasak 1996 and 
Rusche 2002). The fluxes are then calculated accounting for the divergence of the 
velocity field by removing the difference between the interpolated velocity and the flux. 
The inlet and outlet fluxes are then adjusted to obey continuity Finally, if requested by 
the FOAM user, another loop begins (inside of the main PISO loop) which iteratively 
corrects for non-orthogonality. This step ends the main PISO loop. From there, the 
pressure gradient is added to the velocity field, noting that the pressure is the entire 
pressure field, not a correction. To summarize the algorithm (adapted from Ferziger 
and Perie 2002): 

• To begin with, calculate fields at time fa+l at some node i using values u" and 

p" as the initial guess for «"+1 and pn+]. 

• Build and solve the linearized momentum equation for uf. 

• Solve the pressure correction equation to obtain the intermediate pressure. 

• Correct the  velocity   u•   and  pressure   /?msuch  that satisfy the  continuity 
equation. 

• Repeat this procedure updating u" and pm to iteratively improve estimates for 

K,"+1 and pn+l until the corrections become small. 

• Finally, advice in time. 

Note that this method is an alternative to very popular fractional step methods, which 
have been employed in previous implementations of OEC. 

Implementation details concerning solid boundaries 

Eddies that lie close to or on a wall are rotated such that they are not embedded 
in the wall. For a given eddy vector qt, the following transformation is applied until the 
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eddy has been rotated far enough from the wall making sure that the magnitude of qt 

remains unchanged: 

With the scalar coefficients 

and 

r= 

'*] 
q,=y q,-x 0 

- &J. 

r _ 1                ycell 
A     l                         i 

W^J 
1 

\q\2               T yii | 

W-s) w+ *2) +< 

(89) 

(90) 

(91) 

where ycell is the distance of the eddy in question from the nearest wall. Note once 
again that the hats have been dropped for convenience. The loop terminates 

when\af\
2 <y^2 where a, =9, x«(and «,is the unit normal vector of the nearest wall. 

The same procedure works ifLt is substituted for qt. Once an eddy is rotated, the 

corresponding Reynolds stress tensor must also be rotated in order to ensure qt and 

^remain orthogonal. Rodrigues' rotation formula is employed: 

T^Py+iS^-fycost + ^smt (92) 

with <f> the angle between the original and rotated eddy vector, the cosine between the 

old and new vectors is defined ascos^ = (^,oW •tf,)/(|g,oW||g,|), and the sine subsequently 

calculated  via   sin # = <Jl- cos2 </>,   and   Pl)=alar  The  skew-symmetric tensor   Z,yis 

defined for each as 

(93) 

Finally, employing Equation (92) above, Rv is rotated via RtJ = T^R^. The same 

procedure works if L, is substituted for qt. Several ideas are implicit to this selection of 
a near wall rotation algorithm. First, and most importantly, the procedure outlined 
above does not alter the magnitude of the eddy vector it is operating on. This 
essentially decouples the near wall dissipation from the rotation operation. Whether 
this is physical or not is still the subject of current research. It may be the case that 

" 0 -<h a2" 

A,= a3 
0 ~ax 

ra2 fli 0 
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such near wall realignment does in fact affect the dissipation and thus should affect the 
magnitude of the eddy vectors. Independent of the magnitude of the eddy vectors, the 
Reynolds stress tensor rotation must conserve kinetic energy both locally and globally, 
as it is surmised that eddy realignment (at least realignment that does not affect the 
eddy vector magnitude) should not affect the local or global kinetic energy. The method 
used to rotate the per-eddy stress tensors conserves local kinetic energy (i.e. the trace 
of the stress tensor remains constant) and validation cases have shown that global 
kinetic energy (the trace of the average stress tensor) is also preserved. 

For the most part, eddies have at least two non-zero components and theory 
associated orientation vectors are neither perfectly normal to nor tangent to a solid 
boundary, as illustrated in Figure 32 A. Figure 32 B illustrates two troublesome 
situations. On the left, the eddy is perfectly tangential to the wall and on the right the 
eddy is perfectly normal to the wall. The above rotation algorithm fails in these 
situations. If the eddy is normal, the eddy should never be rotated as it cannot be 

wall wall 
Figure 32: A) Most eddies are not aligned tangential or normal to a solid boundary. B) Some eddies lay 
be normal to (left) or tangential to (right) a wall. 

intersecting the wall. This is case rarely, but must be accommodated. In the event of a 
perfectly parallel eddy, the problem becomes more serious. In this case, the normal 
component of the eddy vector (in this case, the Y components) is identically (or close 
to) zero. Even if the eddy is embedded in a wall (see Figure 26), the algorithm above 
will fail. Either it will fail to rotate the eddy (as no changed to the tangential X or Z 
components can possibly rotate the eddy away from the wall) or it will spin the eddy 
about its wall-normal (Y) axis forever. Neither case is desirable, as the eddy must be 
rotated out of the wall but the standard approach will not work. Several possible 
solutions exist, including "nudging" the eddy away from the wall by forcing the wall- 
normal (Y) component to be non-zero. Of course, the sign of the arbitrary non-zero Y 
component will dictate whether the resulting eddy vector points toward or away from 
the wall. There is no correct answer to this question, and as of now the OEC near-wall 
algorithm chooses to point all perfectly-tangential eddies slightly away from the solid 
boundary they are embedded in to. 

Moving from the region near a solid boundary to the wall itself, the boundary 
conditions imposed on the eddy vectors and Reynolds stress tensor will be discussed. 
Two types of solid boundaries will be considered: first, a classic "slip" wall where 
surface-normal velocities are forced to zero (a no-penetration condition) but tangential 
components are undamped, that is a zero gradient condition is set as the boundary 
condition. The appropriate boundary conditions for velocity are obvious, as are those 
for other quantities such as kinetic energy, pressure, and so on. Appropriate boundary 
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conditions for the eddy vectors and Reynolds stress tensors are less obvious, however. 
Equation (94) proposes slip wall boundary conditions for the Reynolds stress tensor RtJ 

R 
" \slip-wall 

dR 
dy 

11 _ = 0 *.2=0 

^=0 

dy 
= 0 

^23 : = 0 

^33 

dy 
= 0 

(94) 

And for the original eddy vectors qt: 

</, wall 

ft=0 

= 0 
dq2 

dy 

93-0 

(95) 

In Equation (94), all the components of the stress tensor which involve a vertical (2) 
component are set to zero, while those independent of the vertical component are set 
to zero gradient in the vertical (in this case, Y) direction. A different idea is applied to 
the eddy vectors in Equation (95). At a slip wall (indeed at any solid boundary), only the 
vertical component of the eddy vector is allowed grow or shrink (once again assuming 
Y is the wall-normal direction), and the two tangential components of the eddy vector 
are forced to zero. Selecting tensor components to be no-slip or zero gradient in a 
certain direction is somewhat nebulous in OpenFOAM. A boundary condition does 
exist which allows certain components of a vector or tensor to have zero gradient 
boundary conditions applied while others can have a fixed value {i.e. zero) condition 
applied. The current implementation of this boundary condition does not, however, 
allow for a zero gradient boundary condition in a certain direction to be applied - the 
zero gradient is applied to all directions of a given component. 

The second case considered is somewhat simpler, that is appropriate boundary 
conditions at a no-slip wall (which is often of most interest to engineers) where most 
quantities are forced to zero. Again, many boundary conditions are obvious: all three 
velocity components are forced to zero, the kinetic energy is forced to zero as are all 
six components of the Reynolds stress tensor. The eddy vector <?, is left in the form of 

Equation (95) above, whereas all components of the eddy vector Z,,are set to zero at 
the solid boundary, essentially forcing all eddies at the wall to be of zero size, which is 
intuitive physically. The prescription of such boundary conditions, while convenient in 
the case of a no-slip wall, causes several numerical issues that must be taken in to 
consideration. Specifically, forcing the eddy vectors Lt to be zero at solid boundaries 
can lead to unexpected behavior (in the form of divide-by-zeros) unless care is taken 
when implementing terms that include Z,,or L2 in the denominator. 
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Accomplishments 

The Oriented Eddy Collision model has advanced significantly from its original form. 
The model has been tuned and tested with a variety of fundamental turbulent flows. 
The model has been parallelized, and implemented in OpenFOAM. Furthermore, 
extensive research in to the model's behavior near solid boundaries has been 
performed. To summarize: 

• OEC has been implemented in an unstructured, fully three-dimensional, parallel 
Navier-Stokes code (OpenFOAM). 

• OEC has been validated and tested in FOAM using previously employed 
benchmarks as well as several new test cases. 

• Feasible boundary conditions have been developed for use on slip and no-slip 
boundaries. 

• Insight has been gained in to the physical behavior of turbulent eddies near solid 
boundaries, and ways in which other Reynolds-stress transport models may be 
handled in such physical situations. 

• The number of model constants present in the code has been reduced. 

• OEC is in a position to be used by a wide audience for a variety of both 
fundamental and real-world turbulent flows. 

Future Work 

The Oriented Eddy Collision model is still under development. Specifically, the 
behavior of the model near solid boundaries is still being investigated and perfected. 
Future work may include: 

• Using OEC in OpenFOAM to determine the model's ability to predict turbulent 
transition. 

• Continuing to test and perfect the model's behavior near solid boundaries. 

• Extending the FOAM cases to flows of interest to engineers. 

• Optimizing OEC's performance in OpenFOAM. 
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